vllm.model_executor.models.plamo3 ¶
Inference-only PLaMo3 model.
DenseMLP ¶
Bases: Module
Source code in vllm/model_executor/models/plamo3.py
down_proj instance-attribute ¶
down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
prefix=f"{prefix}.down_proj",
quant_config=quant_config,
return_bias=False,
)
gate_up_proj instance-attribute ¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
prefix=f"{prefix}.gate_up_proj",
quant_config=quant_config,
return_bias=False,
)
__init__ ¶
__init__(
config: Plamo3Config,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None
Source code in vllm/model_executor/models/plamo3.py
Plamo3AttentionMixer ¶
Bases: Module
Source code in vllm/model_executor/models/plamo3.py
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | |
attn instance-attribute ¶
attn = Attention(
num_heads,
head_dim,
scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
per_layer_sliding_window=interleaved_sliding_window[
layer_idx
],
prefix=f"{prefix}.attn",
)
o_proj instance-attribute ¶
o_proj = RowParallelLinear(
total_num_heads * head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
hidden_size,
head_dim,
total_num_heads,
total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
rotary_emb instance-attribute ¶
rotary_emb = get_rope(
head_dim,
rotary_dim=head_dim,
max_position=max_position,
rope_parameters=rope_parameters,
)
__init__ ¶
__init__(
*, vllm_config: VllmConfig, prefix: str = "", **kwargs
) -> None
Source code in vllm/model_executor/models/plamo3.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | |
forward ¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Tensor | None,
**kwargs: Any,
) -> Tensor
Source code in vllm/model_executor/models/plamo3.py
Plamo3Config ¶
Bases: PretrainedConfig
Source code in vllm/model_executor/models/plamo3.py
Plamo3Decoder ¶
Bases: Module
Source code in vllm/model_executor/models/plamo3.py
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '') -> None
Source code in vllm/model_executor/models/plamo3.py
forward ¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Tensor | None,
) -> tuple[Tensor, Tensor | None]
Source code in vllm/model_executor/models/plamo3.py
Plamo3DecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/plamo3.py
mixer instance-attribute ¶
mixer = Plamo3AttentionMixer(
vllm_config=vllm_config, prefix=f"{prefix}.mixer"
)
mlp instance-attribute ¶
__init__ ¶
__init__(
vllm_config: VllmConfig, prefix: str = "", **kwargs: Any
) -> None
Source code in vllm/model_executor/models/plamo3.py
forward ¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Tensor | None,
**kwargs: Any,
) -> tuple[Tensor, Tensor | None]
Source code in vllm/model_executor/models/plamo3.py
Plamo3ForCausalLM ¶
Bases: Module, SupportsPP
Source code in vllm/model_executor/models/plamo3.py
lm_head instance-attribute ¶
lm_head = ParallelLMHead(
num_embeddings,
hidden_size,
org_num_embeddings=vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
prefix=f"{prefix}.lm_head",
)
logits_processor instance-attribute ¶
logits_processor = LogitsProcessor(
unpadded_vocab_size, vocab_size
)
make_empty_intermediate_tensors instance-attribute ¶
model instance-attribute ¶
model = Plamo3Model(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute instance-attribute ¶
__init__ ¶
__init__(
*, vllm_config: VllmConfig, prefix: str = ""
) -> None
Source code in vllm/model_executor/models/plamo3.py
compute_logits ¶
embed_input_ids ¶
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor
Source code in vllm/model_executor/models/plamo3.py
load_weights ¶
Plamo3Model ¶
Bases: Module
Source code in vllm/model_executor/models/plamo3.py
embed_tokens instance-attribute ¶
embed_tokens = VocabParallelEmbedding(
vocab_size,
hidden_size,
org_num_embeddings=vocab_size,
prefix=f"{prefix}.embed_tokens",
)
make_empty_intermediate_tensors instance-attribute ¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/plamo3.py
embed_input_ids ¶
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: Tensor | None = None,
) -> Tensor